Logic Notation

Common notation:

`and` Both statements are true
`or` One or both statements are true
`not` Negation - i.e. `not A` means "not A"
`=>` Implies - i.e. `A => B`  means \(A\) implies \(B\)
`if` `A if B` means \(A\) is true if \(B\) is true 
`<=>`  or  \(iff\) If and only if - `A <=> B` means \(A\) is true if \(B\) is true and \(B\) is true if \(A\) is true.
`AA` For all - e.g. `AA x` means "for all x"
`EE` There exists - e.g. `EE x` means "there exists an x" 
`s.t.` Such that
(0 Votes)